Publication

Advanced Multifunctional Nanocomposite Lab

Selected Representative Publications

  • 2023
  • Giant thermal rectification efficiency by geometrically enhanced asymmetric non-linear radiation
  • Seongkyun Kim , Taeyeop Kim , Jaehyun Sung , Yongjun Kim , Dongwoo Lee and Seunghyun Baik Materials Horizons
  • Thermal rectification is an asymmetric heat transport phenomenon where thermal conductance changes depending on the temperature gradient direction. The experimentally reported efficiency of thermal rectification materials and devices, which are applicable for a wide range of temperatures, is relatively low. Here we report a giant thermal rectification efficiency of 218% by maximizing asymmetry in …
  • 2022
  • Invariable resistance of conductive nanocomposite over 30% strain
  • C. MUHAMMED AJMAL, SEOKJAE CHA, WONJOON KIM, K. P. FASEELA, HEEJUN YANG, AND SEUNGHYUN BAIK Science Advances
  • The dependence of the electrical resistance on materials’ geometry determines the performance of conductive nanocomposites. Here, we report the invariable resistance of a conductive nanocomposite over 30% strain. This is enabled by the in situ–generated hierarchically structured silver nanosatellite particles, realizing a short interparticle distance (4.37 nm) in a stretchable silicone rubber matr…
Hierarchical Construction of Self-Standing Anodized Titania Nanotube Arrays and Nanoparticles for Efficient and Cost-Effective Front-Illuminated Dye-Sensitized Solar Cells
Author
Qing Zheng, Hosung Kang, Jongju Yun, Jiyong Lee, Jong Hyeok Park, and Seunghyun Baik
Journal
ACS Nano
Vol
5
Page
5088-5093
Year
2011
We report on the influence of hierarchical structures, constructed via layer-by-layer assembly of self-standing titania nanotube arrays and nanoparticles, upon charge recombination and photoelectric performance of front-illuminated dye-sensitized solar cells. Both nanotubes and nanoparticles were produced by anodization rather than additionally employing other methods, providing low cost and great simplicity. Electrochemical impedance spectroscopy under AM 1.5 illumination indicates the construction of hybrid morphology has superior recombination characteristics and a longer electron lifetime than nanoparticulate systems. This enhancement with the incorporation of anodized titania nanoparticles with 1D architectures is unprecedented for solar cells. Owing to the better light harvesting efficiency, extended electron lifetime and desirable electron extraction, the short-circuit photocurrent density of solar cell is 18.89 mA cm–2 with an overall power conversion efficiency of 8.80% and an incident photon-to-current conversion efficiency of 84.6% providing a very promising candidate for sustainable energy production with a high performance/cost ratio.