Publication

Advanced Multifunctional Nanocomposite Lab

Selected Representative Publications

  • 2023
  • Giant thermal rectification efficiency by geometrically enhanced asymmetric non-linear radiation
  • Seongkyun Kim , Taeyeop Kim , Jaehyun Sung , Yongjun Kim , Dongwoo Lee and Seunghyun Baik Materials Horizons
  • Thermal rectification is an asymmetric heat transport phenomenon where thermal conductance changes depending on the temperature gradient direction. The experimentally reported efficiency of thermal rectification materials and devices, which are applicable for a wide range of temperatures, is relatively low. Here we report a giant thermal rectification efficiency of 218% by maximizing asymmetry in …
  • 2022
  • Invariable resistance of conductive nanocomposite over 30% strain
  • C. MUHAMMED AJMAL, SEOKJAE CHA, WONJOON KIM, K. P. FASEELA, HEEJUN YANG, AND SEUNGHYUN BAIK Science Advances
  • The dependence of the electrical resistance on materials’ geometry determines the performance of conductive nanocomposites. Here, we report the invariable resistance of a conductive nanocomposite over 30% strain. This is enabled by the in situ–generated hierarchically structured silver nanosatellite particles, realizing a short interparticle distance (4.37 nm) in a stretchable silicone rubber matr…
Ultrahigh Thermal Conductivity of Interface Materials by Silver-Functionalized Carbon Nanotube Phonon Conduits
Author
Daewoo Suh, Choong Man Moon, Duckjong Kim, Seunghyun Baik
Journal
Advanced Materials
Vol
28
Page
7220-7227
Year
2016
An ultrahigh thermal conductivity (κ = 160 W m−1K−1) of thermal interface materials is achieved with a high enhancement factor (96). A small amount (2.3 vol%) of 1D multiwalled carbon nanotubes (MWNTs) with high κ constructs effective phonon transport pathways between microscale silver-flake islands, and a solid phonon transport junction is realized by the coalescence of silver nanoparticles pre-functionalized on the MWNTs.