Seongkyun Kim , Taeyeop Kim , Jaehyun Sung , Yongjun Kim , Dongwoo Lee and Seunghyun BaikMaterials Horizons
Thermal rectification is an asymmetric heat transport phenomenon where thermal conductance changes depending on the temperature gradient direction. The experimentally reported efficiency of thermal rectification materials and devices, which are applicable for a wide range of temperatures, is relatively low. Here we report a giant thermal rectification efficiency of 218% by maximizing asymmetry in …
C. MUHAMMED AJMAL, SEOKJAE CHA, WONJOON KIM, K. P. FASEELA, HEEJUN YANG, AND SEUNGHYUN BAIKScience Advances
The dependence of the electrical resistance on materials’ geometry determines the performance of conductive nanocomposites. Here, we report the invariable resistance of a conductive nanocomposite over 30% strain. This is enabled by the in situ–generated hierarchically structured silver nanosatellite particles, realizing a short interparticle distance (4.37 nm) in a stretchable silicone rubber matr…
K. P. Faseela, C. Muhammed Ajmal, Seokjae Cha, Seunghyun BaikAdvanced Functional Materials
Copper (Cu) is an attractive low-cost alternative to silver or gold. However, it is susceptible to oxidation in air. Here, facile in situ regeneration of oxidized Cu flakes (CuFLs) for the synthesis of highly conductive non-oxidized nanocomposites is reported. The oxidized CuFLs are regenerated into non-oxidized CuFLs and Cu nanosatellite (CuNS) particles by formic acid-aided in situ etching and r…
Shabas Ahammed Abdul Jaleel, Taehun Kim, Seunghyun BaikAdvanced Materials
Phase-change materials (PCMs) have received considerable attention to take advantage of both pad-type and grease-type thermal interface materials (TIMs). However, the critical drawbacks of leaking, non-recyclability, and low thermal conductivity (κ) hinder industrial applications of PCM TIMs. Here, leakage-free healable PCM TIMs with extraordinarily high κ and low total thermal resistance (Rt) are…
The thermal transport across the grain boundary (GB) is inevitably encountered for large-area polycrystalline graphene. However, the influence of GB configuration on thermal transport is not well understood. Here we investigated the effect of grain misorientation angle on the in-plane thermal conductivity (κ) of suspended graphene by using the optothermal Raman technique. Graphene with well-defined grain orientation was synthesized on an electropolished, annealed, and oxygen plasma-treated single-crystalline Cu(111) substrate by low-pressure chemical vapor deposition. The κ was primarily dependent on the grain size of single-, bi-, and polycrystalline graphene, consistent with the Boltzmann transport model. Surprisingly, κ of bicrystalline graphene dramatically decreased with a slight misorientation (<4°) between two neighboring grains. This phonon-boundary scattering was successfully simulated by the GB misorientation model. The GB length or shape also affected κ as a tertiary parameter. The GB misorientation angle and length, in addition to the grain size, were determining factors of κ, which may be applicable for other two-dimensional materials.