Publication

Advanced Multifunctional Nanocomposite Lab

Selected Representative Publications

  • 2023
  • Giant thermal rectification efficiency by geometrically enhanced asymmetric non-linear radiation
  • Seongkyun Kim , Taeyeop Kim , Jaehyun Sung , Yongjun Kim , Dongwoo Lee and Seunghyun Baik Materials Horizons
  • Thermal rectification is an asymmetric heat transport phenomenon where thermal conductance changes depending on the temperature gradient direction. The experimentally reported efficiency of thermal rectification materials and devices, which are applicable for a wide range of temperatures, is relatively low. Here we report a giant thermal rectification efficiency of 218% by maximizing asymmetry in …
  • 2022
  • Invariable resistance of conductive nanocomposite over 30% strain
  • C. MUHAMMED AJMAL, SEOKJAE CHA, WONJOON KIM, K. P. FASEELA, HEEJUN YANG, AND SEUNGHYUN BAIK Science Advances
  • The dependence of the electrical resistance on materials’ geometry determines the performance of conductive nanocomposites. Here, we report the invariable resistance of a conductive nanocomposite over 30% strain. This is enabled by the in situ–generated hierarchically structured silver nanosatellite particles, realizing a short interparticle distance (4.37 nm) in a stretchable silicone rubber matr…
Covalently Functionalized Leakage-Free Healable Phase-Change Interface Materials with Extraordinary High-Thermal Conductivity and Low-Thermal Resistance
Author
Shabas Ahammed Abdul Jaleel, Taehun Kim, Seunghyun Baik
Journal
Advanced Materials
Vol
35
Page
2300956
Year
2023
Phase-change materials (PCMs) have received considerable attention to take advantage of both pad-type and grease-type thermal interface materials (TIMs). However, the critical drawbacks of leaking, non-recyclability, and low thermal conductivity (κ) hinder industrial applications of PCM TIMs. Here, leakage-free healable PCM TIMs with extraordinarily high κ and low total thermal resistance (Rt) are reported. The matrix material (OP) is synthesized by covalently functionalizing octadecanol PCM with polyethylene-co-methyl acrylate-co-glycidyl methacrylate polymer through the nucleophilic epoxy ring opening reaction. The OP changes from semicrystalline to amorphous above the phase-transition temperature, preventing leaking. The hydrogen-bond-forming functional groups in OP enable nearly perfect healing efficiencies in tensile strength (99.7%), κ (97.0%), and Rt (97.4%). Elaborately designed thermally conductive fillers, silver flakes and multiwalled carbon nanotubes decorated with silver nanoparticles (nAgMWNTs), are additionally introduced in the OP matrix (OP-Ag-nAgMWNT). The nAgMWNTs bridge silver-flake islands, resulting in extraordinarily high κ (43.4 W m−1 K−1) and low Rt (30.5 mm2 K W−1) compared with PCM TIMs in the literature. Excellent heat dissipation and recycling demonstration of the OP-Ag-nAgMWNT is also carried out using a computer graphic processing unit. The OP-Ag-nAgMWNT is a promising future TIM for thermal management of mechanical and electrical devices.